Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 334: 122074, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553207

RESUMO

Bacteroides spp. are prominent members of the human gut microbiota that play critical roles in the metabolism of complex carbohydrates from the daily diet. Hyaluronic acid (HA) is a multifunctional polysaccharide which has been extensively used in the food and biomedical industry. However, how HA is degraded and fermented by Bacteroides spp. has not been fully characterized. Here, we comprehensively investigated the detailed degradation profiles and fermentation characteristics of four different HAs with discrete molecular weight (Mw) by fourteen distinctive Bacteroides spp. from the human gut microbiota. Our results indicated that high-Mw HAs were more degradable and fermentable than low-Mw HAs. Interestingly, B. salyersiae showed the best degrading capability for both high-Mw and low-Mw HAs, making it a keystone species for HA degradation among Bacteroides spp.. Specifically, HA degradation by B. salyersiae produced significant amounts of unsaturated tetrasaccharide (udp4). Co-culture experiments indicated that the produced udp4 could be further fermented and utilized by non-proficient HA-degraders, suggesting a possible cross-feeding interaction in the utilization of HA within the Bacteroides spp.. Altogether, our study provides novel insights into the metabolism of HA by the human gut microbiota, which has considerable implications for the development of new HA-based nutraceuticals and medicines.


Assuntos
Microbioma Gastrointestinal , Humanos , Fermentação , Ácido Hialurônico/metabolismo , Polissacarídeos/metabolismo , Bacteroides/metabolismo
2.
Microbiome ; 12(1): 41, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38419055

RESUMO

Chondroitin sulfate (CS) has widely been used as a symptomatic slow-acting drug or a dietary supplement for the treatment and prevention of osteoarthritis. However, CS could not be absorbed after oral intake due to its polyanionic nature and large molecular weight. Gut microbiota has recently been proposed to play a pivotal role in the metabolism of drugs and nutrients. Nonetheless, how CS is degraded by the human gut microbiota has not been fully characterized. In the present study, we demonstrated that each human gut microbiota was characterized with a unique capability for CS degradation. Degradation and fermentation of CS by the human gut microbiota produced significant amounts of unsaturated CS oligosaccharides (CSOSs) and short-chain fatty acids. To uncover which microbes were responsible for CS degradation, we isolated a total of 586 bacterial strains with a potential CS-degrading capability from 23 human fecal samples. Bacteroides salyersiae was a potent species for CS degradation in the human gut microbiota and produced the highest amount of CSOSs as compared to other well-recognized CS-degraders, including Bacteroides finegoldii, Bacteroides thetaiotaomicron, Bacteroides xylanisolvens, and Bacteroides ovatus. Genomic analysis suggested that B. salyersiae was armed with multiple carbohydrate-active enzymes that could potentially degrade CS into CSOSs. By using a spent medium assay, we further demonstrated that the unsaturated tetrasaccharide (udp4) produced by the primary degrader B. salyersiae could serve as a "public goods" molecule for the growth of Bacteroides stercoris, a secondary CS-degrader that was proficient at fermenting CSOSs but not CS. Taken together, our study provides insights into the metabolism of CS by the human gut microbiota, which has promising implications for the development of medical and nutritional therapies for osteoarthritis. Video Abstract.


Assuntos
Bacteroides , Microbioma Gastrointestinal , Osteoartrite , Humanos , Sulfatos de Condroitina/metabolismo , Oligossacarídeos/metabolismo
3.
Int J Biol Macromol ; 257(Pt 1): 128592, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056745

RESUMO

Polyguluronate (PG) is a fermentable polysaccharide from edible algae. The present study was designed to investigate the therapeutic effect of PG on ulcerative colitis (UC) and its underlying mechanisms. Our results suggest that oral intake of PG attenuates UC and improves gut microbiota dysbiosis by promoting the growth of Lactobacillus spp. in dextran sulfate sodium-fed mice. Five different species of Lactobacillus were isolated from the feces of PG-treated mice and L. murinus was identified to have the best anti-colitis effect, suggesting a critical role for L. murinus in mediating the therapeutic effect of PG. Furthermore, PG was degraded potentially by the beta-glucuronidase from L. murinus and adding PG to the culture medium of L. murinus remarkably increased its production of anti-inflammatory metabolites, including itaconic acid, cis-11,14-eicosadienoic acid, and 3-amino-3-(2-chlorophenyl)-propionic acid. Additionally, L. salivarius, a human intestine-derived PG-utilizing species that is closely related to L. murinus, was also demonstrated to have potent anti-colitis effects, suggesting that it is a candidate target of PG in the human gut. Altogether, our study illustrates an unprecedented application of PG in the treatment of UC and establishes the basis for understanding its therapeutic effect from the perspective of L. murinus and its metabolites.


Assuntos
Colite Ulcerativa , Colite , Polissacarídeos Bacterianos , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Lactobacillus , Colite/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Colo/metabolismo , Camundongos Endogâmicos C57BL
4.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834117

RESUMO

Previous studies have demonstrated that the intestinal abundance of Bacteroides uniformis is significantly higher in healthy controls than that in patients with ulcerative colitis (UC). However, what effect B. uniformis has on the development of UC has not been characterized. Here, we show for the first time that B. uniformis F18-22, an alginate-fermenting bacterium isolated from the healthy human colon, protects against dextran-sulfate-sodium (DSS)-induced UC in mice. Specifically, oral intake of B. uniformis F18-22 alleviated colon contraction, improved intestinal bleeding and attenuated mucosal damage in diseased mice. Additionally, B. uniformis F18-22 improved gut dysbiosis in UC mice by increasing the abundance of anti-inflammatory acetate-producing bacterium Eubacterium siraeum and decreasing the amount of pro-inflammatory pathogenetic bacteria Escherichia-Shigella spp. Moreover, B. uniformis F18-22 was well-tolerated in mice and showed no oral toxicity after repeated daily administration for 28 consecutive days. Taken together, our study illustrates that B. uniformis F18-22 is a safe and novel probiotic bacterium for the treatment of UC from the healthy human colon.


Assuntos
Colite Ulcerativa , Colite , Probióticos , Humanos , Animais , Camundongos , Colite Ulcerativa/microbiologia , Colo/patologia , Bacteroides , Probióticos/uso terapêutico , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colite/patologia
5.
Nutrients ; 15(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37836407

RESUMO

Dietary intake of the sulfated polysaccharide from edible alga E. clathrata (ECP) has recently been illustrated to attenuate ulcerative colitis (UC) by targeting gut dysbiosis in mice. However, ECP is not easily absorbed in the gut and, as a potential candidate for next-generation prebiotics development, how it is fermented by human gut microbiota has not been characterized. Here, using in vitro anaerobic fermentation and 16S high-throughput sequencing, we illustrate for the first time the detailed fermentation characteristics of ECP by the gut microbiota of nine UC patients. Our results indicated that, compared to that of glucose, fermentation of ECP by human gut microbiota produced a higher amount of anti-inflammatory acetate and a lower amount of pro-inflammatory lactate. Additionally, ECP fermentation helped to shape a more balanced microbiota composition with increased species richness and diversity. Moreover, ECP significantly stimulated the growth of anti-colitis bacteria in the human gut, including Bacteroides thetaiotaomicron, Bacteroides ovatus, Blautia spp., Bacteroides uniformis, and Parabacteroides spp. Altogether, our study provides the first evidence for the prebiotic effect of ECP on human gut microbiota and sheds new light on the development of ECP as a novel prebiotic candidate for the prevention and potential treatment of UC.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Microbiota , Humanos , Camundongos , Animais , Colite Ulcerativa/terapia , Fermentação , Polissacarídeos/farmacologia , Prebióticos
6.
Nutrients ; 15(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986080

RESUMO

Alginate has been documented to prevent the development and progression of ulcerative colitis by modulating the gut microbiota. However, the bacterium that may mediate the anti-colitis effect of alginate has not been fully characterized. We hypothesized that alginate-degrading bacteria might play a role here since these bacteria could utilize alginate as a carbon source. To test this hypothesis, we isolated 296 strains of alginate-degrading bacteria from the human gut. Bacteroides xylanisolvens AY11-1 was observed to have the best capability for alginate degradation. The degradation and fermentation of alginate by B. xylanisolvens AY11-1 produced significant amounts of oligosaccharides and short-chain fatty acids. Further studies indicated that B. xylanisolvens AY11-1 could alleviate body weight loss and contraction of colon length, reduce the incidences of bleeding and attenuate mucosal damage in dextran sulfate sodium (DSS)-fed mice. Mechanistically, B. xylanisolvens AY11-1 improved gut dysbiosis and promoted the growth of probiotic bacteria, including Blautia spp. And Prevotellaceae UCG-001, in diseased mice. Additionally, B. xylanisolvens AY11-1 showed no oral toxicity and was well-tolerated in male and female mice. Altogether, we illustrate for the first time an anti-colitis effect of the alginate-degrading bacterium B. xylanisolvens AY11-1. Our study paves the way for the development of B. xylanisolvens AY11-1 as a next-generation probiotic bacterium.


Assuntos
Colite , Microbioma Gastrointestinal , Probióticos , Humanos , Masculino , Feminino , Animais , Camundongos , Alginatos/farmacologia , Colite/induzido quimicamente , Colite/prevenção & controle , Colite/microbiologia , Colo/metabolismo , Bactérias/metabolismo , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
7.
Mar Drugs ; 20(12)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36547911

RESUMO

Polysaccharide from the edible alga Enteromorpha clathrata has been demonstrated to exert beneficial effects on human health. However, what effect it has on inflammatory bowel diseases has not been investigated. Here, using a mouse model of dextran sulfate sodium (DSS)-induced ulcerative colitis, we illustrate that Enteromorpha clathrata polysaccharide (ECP) could alleviate body weight loss, reduce incidences of colonic bleeding, improve stool consistency and ameliorate mucosal damage in diseased mice. 16S rRNA high-throughput sequencing and bioinformatic analysis indicated that ECP significantly changed the structure of the gut microbiota and increased the abundance of Parabacteroides spp. in DSS-fed mice. In vitro fermentation studies further confirmed that ECP could promote the growth of Parabacteroides distasonis F1-28, a next-generation probiotic bacterium isolated from the human gut, and increase its production of short-chain fatty acids. Additionally, Parabacteroides distasonis F1-28 was also found to have anti-ulcerative colitis effects in DSS-fed mice. Altogether, our study demonstrates for the first time a beneficial effect of ECP on ulcerative colitis and provides a possible basis for understanding its therapeutic mechanisms from the perspective of symbiotic gut bacteria Parabacteroides distasonis.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Sulfato de Dextrana/toxicidade , RNA Ribossômico 16S , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Bactérias , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/microbiologia
9.
Polymers (Basel) ; 14(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35215682

RESUMO

The human gut microbiota plays a critical role in the metabolism of dietary carbohydrates. Previous studies have illustrated that marine algae oligosaccharides could be utilized and readily fermented by human gut microbiota. However, the human gut microbiota is classified into three different enterotypes, and how this may affect the fermentation processes of marine algae oligosaccharides has not been studied. Here, using in vitro fermentation and 16 S high-throughput sequencing techniques, we demonstrate that the human gut microbiota has an enterotype-specific effect on the fermentation outcomes of marine algae oligosaccharides. Notably, microbiota with a Bacteroides enterotype was more proficient at fermenting carrageenan oligosaccharides (KOS) as compared to that with a Prevotella enterotype and that with an Escherichia enterotype. Interestingly, the prebiotic effects of marine algae oligosaccharides were also found to be enterotype dependent. Altogether, our study demonstrates an enterotype-specific effect of human gut microbiota on the fermentation of marine algae oligosaccharides. However, due to the availability of the fecal samples, only one sample was used to represent each enterotype. Therefore, our research is a proof-of-concept study, and we anticipate that more detailed studies with larger sample sizes could be conducted to further explore the enterotype-specific prebiotic effects of marine oligosaccharides.

10.
Carbohydr Polym ; 278: 118921, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973740

RESUMO

Gloiopeltis furcata is an edible alga that has long been consumed in China. However, the bioactive polysaccharides from G. furcata have been largely unexplored. Here, we show for the first time that a sulfated polysaccharide from G. furcata (SAO) could improve the integrity of the colonic epithelial layer and protect against dextran sulfate sodium-induced intestinal mucosal damage. Mechanistically, SAO attenuated colonic mucosal damage by therapeutically remodeling the interactions between gut microbiota and mucin O-glycans. Specifically, SAO increased the proportions of complex long-chain mucin O-glycans in the epithelial layer with two terminal N-acetylneuraminic acid residues and promoted the growth of probiotic bacteria including Roseburia spp. and Muribaculaceae. Altogether, our study demonstrates a novel application of SAO for the treatment of inflammatory bowel disease-associated mucosal damage and forms the basis to understand the therapeutic effects of natural polysaccharides from the perspective of symbiotic interactions between host mucin O-glycome and gut microbiome.


Assuntos
Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucinas/farmacologia , Polissacarídeos/farmacologia , Alga Marinha/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bactérias/efeitos dos fármacos , Configuração de Carboidratos , Sulfato de Dextrana , Testes de Sensibilidade Microbiana , Mucinas/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
11.
Polymers (Basel) ; 13(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641102

RESUMO

Previous studies have suggested that polysaccharide from Enteromorpha clathrata (ECP) could be used as a potential prebiotic to treat dysbiosis-associated diseases. However, whether it has any therapeutic effects on obesity has not been investigated. In the present study, we explored the anti-obesity effect of ECP and illustrated that it can significantly reduce the body weight and decrease the serum levels of triacylglycerol and cholesterol in high-fat diet (HFD)-fed mice. As revealed by 16S rRNA high-throughput sequencing and bioinformatic analysis, HFD remarkably changed the composition of the gut microbiota and promoted the growth of opportunistic pathogens such as Mucispirillum, Desulfobacterota and Alphaproteobacteria in obese mice. Interestingly, ECP improved intestinal dysbiosis caused by HFD and reshaped the structure of the gut microbiota in diseased mice by increasing the abundance of butyrate-producing bacterium, Eubacterium xylanophilum, in the gut. Altogether, we demonstrate for the first time an anti-obesity effect of ECP and shed new light into its therapeutic mechanisms from the perspective of gut microbiota. Our study will pave the way for the development of ECP as new prebiotic for the treatment of obesity and its associated disorders.

12.
Carbohydr Polym ; 269: 118313, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294327

RESUMO

Hyaluronan (HA) has been widely used as a dietary supplement which can be degraded by gut microbiota. However, the interactions between HA and gut microbiota have not been fully characterized. Here, using an in vitro system, we found that HA is readily fermented by human gut microbiota but with differing fermentative activities among individuals. HA-fermentation boosted Bacteroides spp., Bifidobacterium spp., Dialister spp., Faecalibacterium spp. and produced a significant amount of acetate, propionate and butyrate. Fermentation products profiling indicated that HA could be degraded into unsaturated even-numbered and saturated odd-numbered oligosaccharides. Further, polysaccharide lyases (PLs) and glycoside hydrolases (GHs) including GH88, PL8, PL29, PL35 and PL33 were identified from B. ovatus E3, which can help to explain the structure of the fermentation products. Collectively, our study sheds new light into the metabolism of HA and forms the basis for understanding the bioavailability of HA from a gut microbiota perspective.


Assuntos
Fermentação/fisiologia , Microbioma Gastrointestinal/fisiologia , Ácido Hialurônico/metabolismo , Adulto , Bactérias/enzimologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Glicosídeo Hidrolases/metabolismo , Humanos , Masculino , Polissacarídeo-Liases/metabolismo
13.
Int J Biol Macromol ; 183: 1649-1659, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34048831

RESUMO

Alginate and its derivatives are widely used as food additives and dietary fibers. Previous studies indicated that alginate, polyguluronate (PG) and polymannuronate acid (PM) could be fermented by human gut microbiota. However, how different compositions of the microbiota may affect the fermentation outcomes of these polysaccharides remains unknown. Here we show that Bacteroides-dominated microbiota (Bacteroides enterotype) is more proficient at degrading and utilizing PG and PM as compared to Prevotella-dominated (Prevotella enterotype) and Escherichia-dominated microbiota (Escherichia enterotype). Enterotype dictates the fermentation outcomes of the three fibers and the amount of short-chain fatty acids (SCFAs) that are produced. Fermentation of alginate and PM by Bacteroides-dominated microbiota produced the highest amount of total SCFAs and butyrate. Our study demonstrates an enterotype-specific effect of microbiota on the fermentation of alginate and its derivatives and highlights that personalized nutrition using dietary fibers should be tailored according to individual's composition of the gut microbiome.


Assuntos
Alginatos/química , Ácido Algínico/química , Bactérias/classificação , Polissacarídeos Bacterianos/química , Adulto , Bactérias/isolamento & purificação , Fibras na Dieta , Ácidos Graxos Voláteis/química , Fermentação , Microbioma Gastrointestinal , Humanos , Pessoa de Meia-Idade , Filogenia , Adulto Jovem
14.
Anaerobe ; 68: 102289, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33137435

RESUMO

Heparin and its derivative are commonly used as injectable anticoagulants in clinical procedures, but possess poor oral bioavailability. To explore the role of gut microbiota in the poor oral effect of heparin, the degradation profiles of heparin on six human gut microbiota were investigated. The heparin-degradation ability varied significantly among individuals. Furthermore, two strains of heparin-degrading bacteria, Bacteroides ovatus A2 and Bacteroides cellulosilyticus B19, were isolated from the gut microbiota of different individuals and the degradation products of the isolates were profiled. The ΔUA2S-GlcNS6S was the major end product with almost no desulfation. 3-O-sulfo group-containing tetrasaccharides were detected, which indicated that the antithrombin binding site was broken and this explained the lost anticoagulant activity of heparin. Collectively, the present study assessed the degradation profiles of heparin by human gut microbiota and provided references for the development of oral administration of heparin from a gut microbiota perspective.


Assuntos
Bacteroides/metabolismo , Microbioma Gastrointestinal , Heparina/metabolismo , Adulto , Bacteroides/isolamento & purificação , Fezes/microbiologia , Feminino , Fermentação , Heparina/química , Humanos , Masculino , Adulto Jovem
15.
J Clin Invest ; 130(6): 2992-3004, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32365055

RESUMO

De novo lipogenesis is tightly regulated by insulin and nutritional signals to maintain metabolic homeostasis. Excessive lipogenesis induces lipotoxicity, leading to nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. Genetic lipogenic programs have been extensively investigated, but epigenetic regulation of lipogenesis is poorly understood. Here, we identified Slug as an important epigenetic regulator of lipogenesis. Hepatic Slug levels were markedly upregulated in mice by either feeding or insulin treatment. In primary hepatocytes, insulin stimulation increased Slug expression, stability, and interactions with epigenetic enzyme lysine-specific demethylase-1 (Lsd1). Slug bound to the fatty acid synthase (Fasn) promoter where Slug-associated Lsd1 catalyzed H3K9 demethylation, thereby stimulating Fasn expression and lipogenesis. Ablation of Slug blunted insulin-stimulated lipogenesis. Conversely, overexpression of Slug, but not a Lsd1 binding-defective Slug mutant, stimulated Fasn expression and lipogenesis. Lsd1 inhibitor treatment also blocked Slug-stimulated lipogenesis. Remarkably, hepatocyte-specific deletion of Slug inhibited the hepatic lipogenic program and protected against obesity-associated NAFLD, insulin resistance, and glucose intolerance in mice. Conversely, liver-restricted overexpression of Slug, but not the Lsd1 binding-defective Slug mutant, had the opposite effects. These results unveil an insulin/Slug/Lsd1/H3K9 demethylation lipogenic pathway that promotes NAFLD and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Epigênese Genética , Lipogênese , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição da Família Snail/biossíntese , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Deleção de Genes , Hepatócitos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Fatores de Transcrição da Família Snail/genética
16.
Mar Drugs ; 16(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772753

RESUMO

Recently, accumulating evidence has suggested that Enteromorpha clathrata polysaccharide (ECP) could contribute to the treatment of diseases. However, as a promising candidate for marine drug development, although ECP has been extensively studied, less consideration has been given to exploring its effect on gut microbiota. In this light, given the critical role of gut microbiota in health and disease, we investigated here the effect of ECP on gut microbiota using 16S rRNA high-throughput sequencing. As revealed by bioinformatic analyses, ECP considerably changed the structure of the gut microbiota and significantly promoted the growth of probiotic bacteria in C57BL/6J mice. However, interestingly, ECP exerted different effects on male and female microbiota. In females, ECP increased the abundances of Bifidobacterium spp. and Akkermansia muciniphila, a next-generation probiotic bacterium, whereas in males, ECP increased the population of Lactobacillus spp. Moreover, by shaping a more balanced structure of the microbiota, ECP remarkably reduced the antigen load from the gut in females. Altogether, our study demonstrates for the first time a prebiotic effect of ECP on gut microbiota and forms the basis for the development of ECP as a novel gut microbiota modulator for health promotion and disease management.


Assuntos
Organismos Aquáticos/metabolismo , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Ulva/metabolismo , Proteínas de Fase Aguda/imunologia , Administração Oral , Animais , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/isolamento & purificação , Proteínas de Transporte/sangue , Proteínas de Transporte/imunologia , Biologia Computacional , Suplementos Nutricionais , Modelos Animais de Doenças , Disbiose/sangue , Disbiose/imunologia , Feminino , Humanos , Lactobacillus/efeitos dos fármacos , Lactobacillus/isolamento & purificação , Masculino , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/isolamento & purificação , Polissacarídeos/uso terapêutico , Organismos Livres de Patógenos Específicos , Verrucomicrobia/efeitos dos fármacos , Verrucomicrobia/isolamento & purificação
17.
Food Funct ; 9(1): 655, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29242876

RESUMO

Correction for 'Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae' by Qingsen Shang et al., Food Funct., 2016, 7, 3224-3232.

18.
Carbohydr Polym ; 179: 173-185, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111040

RESUMO

The gut microbiota that resides in the mammalian intestine plays a critical role in host health, nutrition, metabolic and immune homeostasis. As symbiotic bacteria, these microorganisms depend mostly on non-digestible fibers and polysaccharides as energy sources. Dietary polysaccharides that reach the distal gut are fermented by gut microbiota and thus exert a fundamental impact on intestinal ecology. Marine polysaccharides contain a class of dietary fibers that are widely used in food and pharmaceutical industries (e.g., agar and carrageenan). In this regard, insights into fermentation of marine polysaccharides and its effects on intestinal ecology are of vital importance for understanding the beneficial effects of these glycans. Here, in this review, to provide an overlook of current advances and facilitate future studies in this field, we describe and summarize up-to-date findings on how marine polysaccharides are metabolized by gut microbiota and what effects these polysaccharides have on intestinal ecology.


Assuntos
Carboidratos da Dieta/metabolismo , Fibras na Dieta/metabolismo , Fermentação , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Alginatos/metabolismo , Animais , Crustáceos/metabolismo , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Humanos , Intestinos/microbiologia , Prebióticos
19.
Toxicol Lett ; 279: 87-95, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28778519

RESUMO

Carrageenan as a food additive has been used for years. However, controversy exists regarding to the safety of carrageenan and accumulating evidence indicates that it could induce colitis in experimental models. Here, to provide more information on this issue and solve the debate, we studied and compared in detail the toxic effects of different isomers of carrageenan (κ-, ι-, and λ-) on the colon of C57BL/6J mice. Interestingly, all isomers of carrageenan were found to induce colitis with a comparable activity. Given that carrageenan is unabsorbed after oral administration, and also in light of the fact that gut microbiota plays a pivotal role in the pathogenesis of colitis, we further investigated the effect of carrageenan on gut microbiota using high-throughput sequencing. Intriguingly, carrageenan-induced colitis was observed to be robustly correlated with changes in the composition of gut microbiota. Specifically, all carrageenans significantly decreased the abundance of a potent anti-inflammatory bacterium, Akkermansia muciniphila, in the gut, which is highly relevant for understanding the toxic effect of carrageenan. Altogether, our results corroborate previous studies demonstrating harmful gastrointestinal effect of carrageenan and, from a gut microbiota perspective, shed new light into the mechanism by which carrageenan induces colitis in experimental animals.


Assuntos
Carragenina , Colite/microbiologia , Colo/microbiologia , Microbioma Gastrointestinal , Verrucomicrobia/crescimento & desenvolvimento , Animais , Carga Bacteriana , Colite/sangue , Colite/induzido quimicamente , Colo/metabolismo , Biologia Computacional , DNA Bacteriano/genética , Modelos Animais de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Interleucina-10/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Camundongos Endogâmicos C57BL , Análise de Sequência de DNA/métodos , Fator de Necrose Tumoral alfa/sangue , Verrucomicrobia/classificação , Verrucomicrobia/genética
20.
Mar Drugs ; 15(4)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338633

RESUMO

Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens, Bacteroides ovatus, and Bacteroides uniforms, isolated from human gut microbiota, are studied.


Assuntos
Organismos Aquáticos/metabolismo , Bacteroidetes/metabolismo , Microbioma Gastrointestinal/fisiologia , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Alga Marinha/metabolismo , Alginatos/metabolismo , Carragenina/metabolismo , Fermentação/fisiologia , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Humanos , Microbiota/fisiologia , Sefarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...